

BC-GPS2CAN_V2-000

GPS/GNSS module (optional with integrated IMU)

Key Features

- GPS/GNSS features
 - 10 Hz GNSS receiver (GPS, Galileo, GLONASS and BeiDou are received concurrently)
 - Via firmware update of **12.5 Hz GPS2CAN modules from 2019+** can receive signals from all GNSS instead of GPS only, which improves positional accuracy. Update reduces the rate from 12.5 to 10 Hz
 - o SBAS and QZSS augmentation support
 - Typical accuracy of CEP 1.50 m (with GPS only → CEP 2.50 m)
 - Speed, Course and Position accuracy channels
 - o Automatic GPS laptrigger detection for more than 330 racetracks worldwide
 - Additional user configurable GPS position for individual GPS lap time calculation
- Interface type: CAN Bus
- Optional with built-in 6DoF-IMU (BC_GPS2CAN_3A3G-00x)
 - Integrated 6 DoF (optional 9DoF)
 - IMU with range +/- 16 G (optional +/- 30 G)
 - o Up to 1000 Hz IMU signal outputInternal calibration and temperature compensation
 - Built-in orientation correction to rotate mounting position of the module internally to the vehicles coordinate system
 - o Additional first order IIR filter for individual filtering for all axes
- > Speed pulse signal or lap trigger output
- > Math (CALC) channels for online calculations
- Online roll angle calculation
- > Module can work with GPS laptriggers as TransponderX2 simulator
- Mechanical features
 - Compact and light weight housing (Rugged and waterproof (IP67))
 - o Integrated magnet allows simple assembly on all magnetic surfaces

Available options

_3A3G-001	Integrated 6 DoF IMU with individual range selection for Acc ($\pm 2/4/8/16$ G) and Gyros ($\pm 250/500/1000/2000$ °/s)
_3A3G-002	Integrated 6 DoF IMU with individual range selection for Acc (\pm 4/8/16/30 G) and Gyros (\pm 500/1000/2000/4000 °/s)

_3A3G-options are enabled/disabled via firmware update of the module!

Technical specifications

CAN characteristics		
CAN channels		32
CAN lines		1
Baud rate	kBd	up to 1000
Sampling rate CAN channels	Hz	200
Speed out		
Pulse output via open collector	P/min	1000
Sink current	mA	20
Electrical		
Power supply	V	4 to 28
Current consumption @5 V	mA	80 to 85

Mechanical		
Dimensions	mm	37 5x50x16 5
Weight Bike (apple included)		57.5750710.5
	y	55
Weight Car (cable included)	g	75
Housing material		ABS-PC
CAN Connection	В	inder 712, 5PM
Туре		Raychem
Wire cross section		5x AWG26
Lenath Bike	mm	400
Length Car	mm	2000
Longar dar		2000
Environmental		
Sealing class		IP67
Operating temperature	°C	-40 to +85
Humidity	0/	10 10 100
Turnany	/0	
Ordering information		
BC-GPS2CAN V2-000		Bike
BC-GPS2CAN V2-001		Car
BC-GPS2CAN V2-100	Bike wit	th Mounting Plate
	Carwit	th Mounting Plate
DO-OF 020AN_V2-101		in wounting Flate

Dimensions

Connector layout

Connector type

CAN line, Binder 712 5PM				
Pin	Name	Description	Color	
1	CAN H	CAN high	white	
2	CAN L	CAN low	green	
3	GND	Ground	black	
4	Button/Lap	Push-button input/speed output (open collector)	blue	
5	Vext	Power supply (4-28V)	red	

Connector and cable length can be modified on customer request

Default CAN identifiers

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
0x790	V_Sat		ValidSat		SSHH		Course	
0x791	Lat_dez			Lon_dez				
0x792	Altitude				MMDD		HHMM	
0x793	HorAccu		VerAccu		SpAccu		CourAccu	
	Speed_N		Speed_E		Speed_D		Speed_3D	
	HDOP		GDOP		PDOP		VDOP	
	Year	Month	Day	Hour	Min	Sec	hSec	
	Latitude				Longitude			
	A_Lat		A_Lon		Banking		Yawrate	

Mounting Instructions

Improper mounting of the GPS module can result in bad GPS accuracy!

- Mount the GNSS Receiver solid / rigid to the vehicle, avoid vibrations and do not use velcro or similar.
- · Mount the GNSS Receiver to a stable and low or non-vibrating part of the vehicle
- The GNSS Receiver must be mounted on the top of the vehicle and be oriented parallel to the horizon.
- The optimum receiver location must have "unshaded" direct view to the sky.
- When mounting the receiver on non-metal surfaces, please use the self-adhesive ground plane AC-GPS_ground_plane-000
- For fixed screw mounting, AC-GPS2CAN_Mountingplate-000 can be used

Documentation reference

For more information about *Mounting Instructions* please see manual **GPS – General description** on our website: http://2d-datarecording.com/downloads/manuals/

Downloads

- GPS General description
- Revision of GNSS
- Overview 2D GPS/GNSS modules

IIR Filter Channel Group (xxx_IIR)

Each IIR channel is directly linked to the raw channel of the IMU (xxx_RAW). Using the parameter "filter" you can set the desired filter frequency as follows:

 $f_{IIR} = \frac{f_{sampling \, rate_raw}}{2^{Filterstep}}$

Example: Filterstep 4; sampling rate of raw channel = 200Hz → IIR filter frequency = 12.5Hz

Averaging

If the sampling rate of an IIR channel is set lower than the rate of the raw channel, an average is calculated by the ratio of raw channel to the IIR channel.

Example: If the raw channel is set to 1000Hz and the IIR channel is set to 100Hz, an additional average

of 10 samples is calculated.

Rotation Channel Group (xxx_ROT)

The rotation channels are linked directly to the IIR channels, every change of standard and IIR channel will influence the rotation channel. The misalignment can be compensated by entering the mounting angles in comparison to the orthographic system to the rotation channels.

Example: If the sensor is tilted 10 degrees forward and mounted upright,

 \rightarrow mounting angles to insert: x=90°; y=10°; z=10°

Maximum Sampling Rate

The sampling rate for the IIR / ROT channel can never exceed sampling rate of the raw channel