

SD-V01M8-000

Inductive speed sensor

Function

- \triangleright Sensor reacts to crossing metal parts (e.g. screws or parts of the brake disc)
- ≻ Induction signals are measured and counted.

Appropriate signal donators

- Screws of the brake disc \triangleright
- Parts of the brake disc itself Þ
- Additional mounted parts ۶

Technical specifications

Electrical characteristics					
Supply voltage		12	V		
Maximal switch frequency (with impulse ratio 50:50)		800	Hz		
Switch indication		LED yellow			
Measure distance	e: steel allov	maximum 2 maximum 1	mm mm		

Mechanical characteristics

Dimens	sions	ØM8 x 35	mm
Housing	g material	aluminium	
Weight		5	g
Cable 8	& Connector (options on cu type wire cross-section length connector (standard)	ustomer reque PVC 3 x 0,14 300 Binder 719, 4	st) mm ² mm PM
Speed	extension (on request) type wire cross-section length	PUR 4 x AWG 24 1000	mm

Ambient operating range...... -50 to +80 °C

Ordering information

The specifications on this document are subject to change at 2D decision. 2D assumes no responsibility for any claims or damages arising out of the use of this document, or from the use of modules based on this document, including but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights. 2D Debus & Diebold Meßsysteme GmbH http://www.2D-datarecording.com http://www.2D-Kit-System.com mail@2D-datarecording.com

SD-V01M8-000

Inductive speed sensor

Sensor Setup

- Same distance between all signal donators
- > Radius of the signal donators shouldn't be too big (\rightarrow pulses too short)
- > Use signal donators with sharp edges and a flat surface (no inbus or lensescrews)
- > They should consist of an appropriate material (metal, you can test the material with the switch indicator (LED yellow) it should work when the signal donator has a maximum distance of 2mm to steel)
- Optimum distance is 1 to 2mm

> Using aluminium, magnesium, or titanium as signal donators reduces the distance to 1 mm Formulas

		SD-V01M8-000		Multiplicator				Offset
	16 Bit A/D	Speed [km/h]	=	0.05	*	Digits	+	0
Determination of the sensor impulses								

Park your bike (vehicle) so that the rear wheel can rotate

- Guarantee power supplying of the complete measurement system (usually = ignition on)
- Place a mark on the tire or rim.
- Turn the wheel for one complete rotation. The sensor will displayed the number of pulses 2 (=yellow indication LED)
- > To ensure a good result, do several rotations and divide the number of counted pulses by the number of rotations.
- > Finally note the number of pulses for one complete rotation.
- > Note the circumference of your motorcycle wheels (rear and front are different !).
- > Start the program WinIt by pressing the button <Logger> or hit <F2>
- > Take a look for the speed channel (usually named as V Front or V Rear
- Select speed channel and enter tab <Parameter>

2777

In

0

Circumference (mm)
Pulses
Timeout (µsec)
Digital threshold

Enter both values: Circumference and Pulses

Confirm all changes with < Apply>

Connector layout

Pin	Name	Description	Color
1	GND	Digital Ground	blue
2	n.c.	Not connected	-
3	Signal	Digital Signal	black
4	+12V	Power supply	brown

Connector type Connector at sensor

Mating plug

Binder 719, 4PF

Possible options concerning plug and cable on customer request !

Please note:

For the first order of special customer options please use the following order code: SD-V01M8-000 After the first order you will get from 2D a uniquely order code for your next orders.

The specifications on this document are subject to change at 2D decision. 2D assumes no responsibility for any claims or damages arising out of the use of this document, or from the use of modules based on this document, including but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights.

2D Debus & Diebold Meßsysteme GmbH http://www.2D-datarecording.com http://www.2D-Kit-System.com mail@2D-datarecording.com